深度信用风险 (Deep Credit Risk) - 使用Python进行机器学习
Harald Scheule • Daniel Rsch
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
-
-
-
-
- COVID-19
-
- Logit;
-
- CECLIFRS 9CCAR
-
- 1500...
- Understand the role of liquidity, equity and many other key banking features
- Engineer and select features
- Predict defaults, payoffs, loss rates and exposures
- Predict downturn and crisis outcomes using pre-crisis features
- Understand the implications of COVID-19
- Apply innovative sampling techniques for model training and validation
- Deep-learn from Logit Classifiers to Random Forests and Neural Networks
- Do unsupervised Clustering, Principal Components and Bayesian Techniques
- Build multi-period models for CECL, IFRS 9 and CCAR
- Build credit portfolio correlation models for VaR and Expected Shortfal
- Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code
- Access real credit data and much more ...
- Format: Pocket/Paperback
- ISBN: 9780645245202
- Språk: Kinesiska
- Antal sidor: 456
- Utgivningsdatum: 2021-07-23
- Förlag: various Australia publishers