bokomslag 2D Materials for Infrared and Terahertz Detectors
Vetenskap & teknik

2D Materials for Infrared and Terahertz Detectors

Antoni Rogalski

Inbunden

2509:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 3-8 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 248 sidor
  • 2020
2D Materials for Infrared and Terahertz Detectors provides an overview of the performance of emerging detector materials, while also offering, for the first time, a comparison with traditional materials used in the fabrication of infrared and terahertz detectors. Since the discovery of graphene, its applications to electronic and optoelectronic devices have been intensively researched. The extraordinary electronic and optical properties allow graphene and other 2D materials to be promising candidates for infrared (IR) and terahertz (THz) photodetectors, and yet it appears that the development of new detectors using these materials is still secondary to those using traditional materials. This book explores this phenomenon, as well as the advantages and disadvantages of using 2D materials. Special attention is directed toward the identification of the most-effective hybrid 2D materials in infrared and terahertz detectors, as well as future trends. Written by one of the worlds leading researchers in the field of IR optoelectronics, this book will be a must-read for researchers and graduate students in photodetectors and related fields. Features Offers a comprehensive overview of the different types of 2D materials used in fabrication of IR and THz detectors, and includes their advantages/disadvantages The first book to compare new detectors to a wide family of common, commercially available detectors that use traditional materials.
  • Författare: Antoni Rogalski
  • Illustratör: color 138 Illustrations 18 Tables, black and white 13 Illustrations black and white
  • Format: Inbunden
  • ISBN: 9780367477417
  • Språk: Engelska
  • Antal sidor: 248
  • Utgivningsdatum: 2020-10-26
  • Förlag: CRC Press