bokomslag A Nonlinear Transfer Technique for Renorming
Vetenskap & teknik

A Nonlinear Transfer Technique for Renorming

Anbal Molt Jos Orihuela Stanimir Troyanski Manuel Valdivia

Pocket

529:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 148 sidor
  • 2008
Abstract topological tools from generalized metric spaces are applied in this volume to the construction of locally uniformly rotund norms on Banach spaces. The book offers new techniques for renorming problems, all of them based on a network analysis for the topologies involved inside the problem. Maps from a normed space X to a metric space Y, which provide locally uniformly rotund renormings on X, are studied and a new frame for the theory is obtained, with interplay between functional analysis, optimization and topology using subdifferentials of Lipschitz functions and covering methods of metrization theory. Any one-to-one operator T from a reflexive space X into c0 (T) satisfies the authors' conditions, transferring the norm to X. Nevertheless the authors' maps can be far from linear, for instance the duality map from X to X* gives a non-linear example when the norm in X is Frchet differentiable. This volume will be interesting for the broad spectrum of specialists working in Banach space theory, and for researchers in infinite dimensional functional analysis.
  • Författare: Anbal Molt, Jos Orihuela, Stanimir Troyanski, Manuel Valdivia
  • Format: Pocket/Paperback
  • ISBN: 9783540850304
  • Språk: Engelska
  • Antal sidor: 148
  • Utgivningsdatum: 2008-10-21
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K