Familj
Pocket
Ajuste a La Calificacin Del Riesgo De Mercado De Las Emisoras Ms Activas Que Cotizan En La Bolsa Mexicana De Valores, Con La Implementacin De Una Red Neuronal Artificial Clasificadora
Aura Mara Gonzlez Garzn • Esther Guadalupe Carmona Vega
389:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
En Mxico, la aplicacin de Redes Neuronales Artificiales en finanzas, se ha enfocado en el estudio del anlisis del riesgo de crdito; emplendolas para ajustar los resultados de indicadores burstiles que ofrecen informacin til a los inversionistas que desean obtener niveles ptimos de inversin. Sin embargo, esta investigacin en particular, usa esta herramienta para establecer un ajuste a la medicin y clasificacin del riesgo de mercado mexicano; mostrando los resultados obtenidos en la fase experimental de los procesos de entrenamiento y prueba en la segunda etapa de simulacin de la red; los cuales han alcanzado un nivel de categorizacin arriba del 70%, y de acuerdo con stos, las variables que contribuyen significativamente a la medicin y clasificacin del riesgo son: la tasa de rendimiento requerida, los Cetes a 91 das y los rendimientos accionarios, en comparacin con otras ya utilizadas anteriormente en la primera etapa de la simulacin.
In Mexico, the Artificial Neuronal Network applicate to the finances has focused in the study of the analysis of the credit risk; and to fit the results of stock-exchange indicators that offer useful information to the investors who wishes to obtain optimal returns. Nevertheless, in this case in particular, this tool its used to measure and classified the Mexican market risk; showing the results obtained in the experimental phase of the training and test in the second simulation stage of the network; reaching a classification rate of over 70%. According to this, the variables that significantly contribute to the measurement and classification of the risk are: the required rate of return, the Cetes to 91 days and shareholding yields, in comparison with others previously used in the first stage of the simulation.
In Mexico, the Artificial Neuronal Network applicate to the finances has focused in the study of the analysis of the credit risk; and to fit the results of stock-exchange indicators that offer useful information to the investors who wishes to obtain optimal returns. Nevertheless, in this case in particular, this tool its used to measure and classified the Mexican market risk; showing the results obtained in the experimental phase of the training and test in the second simulation stage of the network; reaching a classification rate of over 70%. According to this, the variables that significantly contribute to the measurement and classification of the risk are: the required rate of return, the Cetes to 91 days and shareholding yields, in comparison with others previously used in the first stage of the simulation.
- Format: Pocket/Paperback
- ISBN: 9781524600570
- Språk: Spanska
- Antal sidor: 248
- Utgivningsdatum: 2019-03-22
- Förlag: Authorhouse