bokomslag Algebraic Number Theory and Fermat's Last Theorem
Vetenskap & teknik

Algebraic Number Theory and Fermat's Last Theorem

Ian Stewart David Tall

Inbunden

1689:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 342 sidor
  • 2015
Updated to reflect current research, Algebraic Number Theory and Fermats Last Theorem, Fourth Edition introduces fundamental ideas of algebraic numbers and explores one of the most intriguing stories in the history of mathematicsthe quest for a proof of Fermats Last Theorem. The authors use this celebrated theorem to motivate a general study of the theory of algebraic numbers from a relatively concrete point of view. Students will see how Wiless proof of Fermats Last Theorem opened many new areas for future work. New to the Fourth Edition Provides up-to-date information on unique prime factorization for real quadratic number fields, especially Harpers proof that Z(14) is Euclidean Presents an important new result: Mihilescus proof of the Catalan conjecture of 1844 Revises and expands one chapter into two, covering classical ideas about modular functions and highlighting the new ideas of Frey, Wiles, and others that led to the long-sought proof of Fermats Last Theorem Improves and updates the index, figures, bibliography, further reading list, and historical remarks Written by preeminent mathematicians Ian Stewart and David Tall, this text continues to teach students how to extend properties of natural numbers to more general number structures, including algebraic number fields and their rings of algebraic integers. It also explains how basic notions from the theory of algebraic numbers can be used to solve problems in number theory.
  • Författare: Ian Stewart, David Tall
  • Illustratör: 4 black & white tables 21 black & white illustrations
  • Format: Inbunden
  • ISBN: 9781498738392
  • Språk: Engelska
  • Antal sidor: 342
  • Utgivningsdatum: 2015-10-13
  • Förlag: Chapman & Hall/CRC