bokomslag Algebraic Varieties: Minimal Models and Finite Generation
Vetenskap & teknik

Algebraic Varieties: Minimal Models and Finite Generation

Yujiro Kawamata

Inbunden

1079:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 262 sidor
  • 2024
The finite generation theorem is a major achievement in modern algebraic geometry. Based on the minimal model theory, it states that the canonical ring of an algebraic variety defined over a field of characteristic 0 is a finitely generated graded ring. This graduate-level text is the first to explain this proof. It covers the progress on the minimal model theory over the last 30 years, culminating in the landmark paper on finite generation by BirkarCasciniHaconMcKernan. Building up to this proof, the author presents important results and techniques that are now part of the standard toolbox of birational geometry, including Mori's bend-and-break method, vanishing theorems, positivity theorems, and Siu's analysis on multiplier ideal sheaves. Assuming only the basics in algebraic geometry, the text keeps prerequisites to a minimum with self-contained explanations of terminology and theorems.
  • Författare: Yujiro Kawamata
  • Format: Inbunden
  • ISBN: 9781009344678
  • Språk: Engelska
  • Antal sidor: 262
  • Utgivningsdatum: 2024-06-27
  • Översättare: Chen Jiang
  • Förlag: Cambridge University Press