bokomslag Alternating Direction Method of Multipliers for Machine Learning
Data & IT

Alternating Direction Method of Multipliers for Machine Learning

Zhouchen Lin Huan Li Cong Fang

Pocket

2109:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 263 sidor
  • 2023
Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.
  • Författare: Zhouchen Lin, Huan Li, Cong Fang
  • Format: Pocket/Paperback
  • ISBN: 9789811698422
  • Språk: Engelska
  • Antal sidor: 263
  • Utgivningsdatum: 2023-06-17
  • Förlag: Springer Verlag, Singapore