bokomslag An Introduction to Operators on the Hardy-Hilbert Space
Vetenskap & teknik

An Introduction to Operators on the Hardy-Hilbert Space

Ruben A Martinez-Avendano Peter Rosenthal

Inbunden

1069:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 220 sidor
  • 2006
The great mathematician G. H. Hardy told us that Beauty is the ?rst test: there is no permanent place in the world for ugly mathematics (see [24, p. 85]). It is clear why Hardy loved complex analysis: it is a very beautiful partofclassicalmathematics. ThetheoryofHilbertspacesandofoperatorson themisalmostasclassicalandisperhapsasbeautifulascomplexanalysis. The studyoftheHardyHilbertspace(aHilbertspacewhoseelementsareanalytic functions), and of operators on that space, combines these two subjects. The interplay produces a number of extraordinarily elegant results. For example, very elementary concepts from Hilbert space provide simple proofs of the Poisson integral (Theorem 1. 1. 21 below) and Cauchy integral (Theorem 1. 1. 19) formulas. The fundamental theorem about zeros of fu- tions in the HardyHilbert space (Corollary 2. 4. 10) is the central ingredient of a beautiful proof that every continuous function on [0,1] can be uniformly approximated by polynomials with prime exponents (Corollary 2. 5. 3). The HardyHilbert space context is necessary to understand the structure of the invariant subspaces of the unilateral shift (Theorem 2. 2. 12). Conversely, pr- erties of the unilateral shift operator are useful in obtaining results on f- torizations of analytic functions (e. g. , Theorem 2. 3. 4) and on other aspects of analytic functions (e. g. , Theorem 2. 3. 3). The study of Toeplitz operators on the HardyHilbert space is the most natural way of deriving many of the properties of classical Toeplitz mat- ces (e. g. , Theorem 3. 3.
  • Författare: Ruben A Martinez-Avendano, Peter Rosenthal
  • Format: Inbunden
  • ISBN: 9780387354187
  • Språk: Engelska
  • Antal sidor: 220
  • Utgivningsdatum: 2006-12-01
  • Förlag: Springer-Verlag New York Inc.