bokomslag Analytic Theory of It-Stochastic Differential Equations with Non-smooth Coefficients
Vetenskap & teknik

Analytic Theory of It-Stochastic Differential Equations with Non-smooth Coefficients

Haesung Lee Wilhelm Stannat Gerald Trutnau

Pocket

459:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 126 sidor
  • 2022
This book provides analytic tools to describe local and global behavior of solutions to It-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity. The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in the Lp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it. Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory. Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution.
  • Författare: Haesung Lee, Wilhelm Stannat, Gerald Trutnau
  • Format: Pocket/Paperback
  • ISBN: 9789811938306
  • Språk: Engelska
  • Antal sidor: 126
  • Utgivningsdatum: 2022-08-28
  • Förlag: Springer Verlag, Singapore