bokomslag Applications of Deep Machine Learning in Future Energy Systems
Data & IT

Applications of Deep Machine Learning in Future Energy Systems

Mohammad-Hassan Khooban

Pocket

2509:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 334 sidor
  • 2024

Applications of Deep Machine Learning in Future Energy Systems pushes the limits of current Artificial Intelligence techniques to present deep machine learning suitable for the complexity of sustainable energy systems. The first two chapters take the reader through the latest trends in power engineering and system design and operation before laying out current AI approaches and limitations. Later chapters provide in-depth accounts of specific challenges and the use of innovative third-generation machine learning, including neuromorphic computing, to resolve issues from security to power supply. An essential tool for the management, control, and modelling of future energy systems, this book maps a practical path towards AI capable of supporting sustainable energy.




  • Clarifies the current state and future trends of energy system machine learning and the pitfalls facing our transitioning systems
  • Provides guidance on 3rd-generation AI tools for meeting the challenges of modeling and control in modern energy systems
  • Includes case studies and practical examples of potential applications to inspire and inform researchers and industry developers
  • Författare: Mohammad-Hassan Khooban
  • Format: Pocket/Paperback
  • ISBN: 9780443214325
  • Språk: Engelska
  • Antal sidor: 334
  • Utgivningsdatum: 2024-08-21
  • Förlag: Elsevier