bokomslag Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Vetenskap & teknik

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Andrew Gelman Xiao-Li Meng

Inbunden

1889:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 440 sidor
  • 2004
This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.
  • Författare: Andrew Gelman, Xiao-Li Meng
  • Format: Inbunden
  • ISBN: 9780470090435
  • Språk: Engelska
  • Antal sidor: 440
  • Utgivningsdatum: 2004-07-01
  • Förlag: John Wiley & Sons Inc