bokomslag Attractor Dimension Estimates for Dynamical Systems: Theory and Computation
Data & IT

Attractor Dimension Estimates for Dynamical Systems: Theory and Computation

Nikolay Kuznetsov Volker Reitmann

Inbunden

3249:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 545 sidor
  • 2020
This book provides analytical and numerical methods for the estimation of dimension characteristics (Hausdorff, Fractal, Carathodory dimensions) for attractors and invariant sets of dynamical systems and cocycles generated by smooth differential equations or maps in finite-dimensional Euclidean spaces or on manifolds. It also discusses stability investigations using estimates based on Lyapunov functions and adapted metrics. Moreover, it introduces various types of Lyapunov dimensions of dynamical systems with respect to an invariant set, based on local, global and uniform Lyapunov exponents, and derives analytical formulas for the Lyapunov dimension of the attractors of the Hnon and Lorenz systems. Lastly, the book presents estimates of the topological entropy for general dynamical systems in metric spaces and estimates of the topological dimension for orbit closures of almost periodic solutions to differential equations.
  • Författare: Nikolay Kuznetsov, Volker Reitmann
  • Format: Inbunden
  • ISBN: 9783030509866
  • Språk: Engelska
  • Antal sidor: 545
  • Utgivningsdatum: 2020-07-03
  • Förlag: Springer Nature Switzerland AG