Bayesian Inference in Dynamic Econometric Models
Häftad, Engelska, 2000
Av Luc Bauwens, Michel Lubrano, Jean-François Richard, Universite Catholique de Louvain) Bauwens, Luc (Professor of Economics, Centre for Operations Research and Econometrics [CORE], Professor of Economics, Centre for Operations Research and Econometrics [CORE], CNRS) Lubrano, Michel (Directeur de Recherche, Directeur de Recherche, GREQAM, University of Pittsburgh) Richard, Jean-Francois (University Professor of Economics, University Professor of Economics, Michele Lubrano, Jean Francois Richard
1 299 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
This book contains an up-to-date coverage of the last twenty years advances in Bayesian inference in econometrics, with an emphasis on dynamic models. It shows how to treat Bayesian inference in non linear models, by integrating the useful developments of numerical integration techniques based on simulations (such as Markov Chain Monte Carlo methods), and the long available analytical results of Bayesian inference for linear regression models. It thus covers a broad range of rather recent models for economic time series, such as non linear models, autoregressive conditional heteroskedastic regressions, and cointegrated vector autoregressive models. It contains also an extensive chapter on unit root inference from the Bayesian viewpoint. Several examples illustrate the methods.
Produktinformation
- Utgivningsdatum2000-01-06
- Mått155 x 235 x 20 mm
- Vikt536 g
- SpråkEngelska
- SerieAdvanced Texts in Econometrics
- Antal sidor366
- FörlagOUP OXFORD
- EAN9780198773139