bokomslag Bayesian Machine Learning in Geotechnical Site Characterization
Data & IT

Bayesian Machine Learning in Geotechnical Site Characterization

Jianye Ching

Inbunden

2909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 176 sidor
  • 2024
Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization. Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability degree of belief, showing that well-known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion relative frequency. It then reviews probability theories and useful probability models for cross-correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples. Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.
  • Författare: Jianye Ching
  • Format: Inbunden
  • ISBN: 9781032314419
  • Språk: Engelska
  • Antal sidor: 176
  • Utgivningsdatum: 2024-08-07
  • Förlag: CRC Press