bokomslag Brandt Matrices and Theta Series over Global Function Fields
Vetenskap & teknik

Brandt Matrices and Theta Series over Global Function Fields

Chih-Yun Chuang Ting-Fang Lee Fu-Tsun Wei Jing Yu

Pocket

1249:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 64 sidor
  • 2015
The aim of this article is to give a complete account of the Eichler-Brandt theory over function fields and the basis problem for Drinfeld type automorphic forms. Given arbitrary function field $k$ together with a fixed place $\infty$, the authors construct a family of theta series from the norm forms of ``definite'' quaternion algebras, and establish an explicit Hecke-module homomorphism from the Picard group of an associated definite Shimura curve to a space of Drinfeld type automorphic forms. The ``compatibility'' of these homomorphisms with different square-free levels is also examined. These Hecke-equivariant maps lead to a nice description of the subspace generated by the authors' theta series, and thereby contributes to the so-called basis problem. Restricting the norm forms to pure quaternions, the authors obtain another family of theta series which are automorphic functions on the metaplectic group, and this results in a Shintani-type correspondence between Drinfeld type forms and metaplectic forms.
  • Författare: Chih-Yun Chuang, Ting-Fang Lee, Fu-Tsun Wei, Jing Yu
  • Format: Pocket/Paperback
  • ISBN: 9781470414191
  • Språk: Engelska
  • Antal sidor: 64
  • Utgivningsdatum: 2015-09-30
  • Förlag: American Mathematical Society