3579:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Pocket/Paperback 909:-
The first part of this book introduces the Schubert Cells and varieties of the general linear group Gl (k^(r+1)) over a field k according to Ehresmann geometric way. Smooth resolutions for these varieties are constructed in terms of Flag Configurations in k^(r+1) given by linear graphs called Minimal Galleries. In the second part, Schubert Schemes, the Universal Schubert Scheme and their Canonical Smooth Resolution, in terms of the incidence relation in a Tits relative building are constructed for a Reductive Group Scheme as in Grothendieck's SGAIII. This is a topic where algebra and algebraic geometry, combinatorics, and group theory interact in unusual and deep ways.
- Format: Inbunden
- ISBN: 9781498768290
- Språk: Engelska
- Antal sidor: 462
- Utgivningsdatum: 2016-11-01
- Förlag: CRC Press Inc