bokomslag Cause Effect Pairs in Machine Learning
Data & IT

Cause Effect Pairs in Machine Learning

Isabelle Guyon Alexander Statnikov Berna Bakir Batu

Pocket

1369:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 372 sidor
  • 2020
This book presents ground-breaking advances in the domain of causal structure learning. The problem of distinguishing cause from effect (Does altitude cause a change in atmospheric pressure, or vice versa?) is here cast as a binary classification problem, to be tackled by machine learning algorithms. Based on the results of the ChaLearn Cause-Effect Pairs Challenge, this book reveals that the joint distribution of two variables can be scrutinized by machine learning algorithms to reveal the possible existence of a causal mechanism, in the sense that the values of one variable may have been generated from the values of the other. This book provides both tutorial material on the state-of-the-art on cause-effect pairs and exposes the reader to more advanced material, with a collection of selected papers. Supplemental material includes videos, slides, and code which can be found on the workshop website. Discovering causal relationships from observational data will become increasingly important in data science with the increasing amount of available data, as a means of detecting potential triggers in epidemiology, social sciences, economy, biology, medicine, and other sciences.
  • Författare: Isabelle Guyon, Alexander Statnikov, Berna Bakir Batu
  • Format: Pocket/Paperback
  • ISBN: 9783030218126
  • Språk: Engelska
  • Antal sidor: 372
  • Utgivningsdatum: 2020-11-05
  • Förlag: Springer Nature Switzerland AG