bokomslag Challenges and Trends in Multimodal Fall Detection for Healthcare
Data & IT

Challenges and Trends in Multimodal Fall Detection for Healthcare

Hiram Ponce Lourdes Martnez-Villaseor Jorge Brieva Ernesto Moya-Albor

Pocket

1539:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 259 sidor
  • 2021
This book focuses on novel implementations of sensor technologies, artificial intelligence, machine learning, computer vision and statistics for automated, human fall recognition systems and related topics using data fusion. It includes theory and coding implementations to help readers quickly grasp the concepts and to highlight the applicability of this technology. For convenience, it is divided into two parts. The first part reviews the state of the art in human fall and activity recognition systems, while the second part describes a public dataset especially curated for multimodal fall detection. It also gathers contributions demonstrating the use of this dataset and showing examples. This book is useful for anyone who is interested in fall detection systems, as well as for those interested in solving challenging, signal recognition, vision and machine learning problems. Potential applications include health care, robotics, sports, humanmachine interaction, among others.
  • Författare: Hiram Ponce, Lourdes Martnez-Villaseor, Jorge Brieva, Ernesto Moya-Albor
  • Format: Pocket/Paperback
  • ISBN: 9783030387501
  • Språk: Engelska
  • Antal sidor: 259
  • Utgivningsdatum: 2021-01-29
  • Förlag: Springer Nature Switzerland AG