bokomslag Chebyshev Splines and Kolmogorov Inequalities
Vetenskap & teknik

Chebyshev Splines and Kolmogorov Inequalities

Sergey Bagdasarov

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 210 sidor
  • 2013
Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri- odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex- tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic ana- log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor- ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW .
  • Författare: Sergey Bagdasarov
  • Format: Pocket/Paperback
  • ISBN: 9783034897815
  • Språk: Engelska
  • Antal sidor: 210
  • Utgivningsdatum: 2013-10-03
  • Förlag: Birkhauser Verlag AG