bokomslag Coefficient Systems on the Bruhat-Tits Building and Pro-$p$ Iwahori-Hecke Modules
Vetenskap & teknik

Coefficient Systems on the Bruhat-Tits Building and Pro-$p$ Iwahori-Hecke Modules

Jan Kohlhaase

Pocket

1419:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 69 sidor
  • 2022
Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p.LetI be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If H = R[I\G/I] denotes the pro-p Iwahori- Hecke algebra of G over R we clarify the relation between the category of H-modules and the category of G-equivariant coefficient systems on the semisimple Bruhat-Tits building of G.IfR is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth G-representations generated by their I-invariants. In general, it gives a description of the derived category of H-modules in terms of smooth G-representations and yields a functor to generalized (?, ?)-modules extending the constructions of Colmez, Schneider and Vigneras.
  • Författare: Jan Kohlhaase
  • Format: Pocket/Paperback
  • ISBN: 9781470453763
  • Språk: Engelska
  • Antal sidor: 69
  • Utgivningsdatum: 2022-11-30
  • Förlag: American Mathematical Society