889:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
In this textbook, a concise approach to complex analysis of one and several variables is presented. After an introduction of Cauchys integral theorem general versions of Runges approximation theorem and Mittag-Lefflers theorem are discussed. The fi rst part ends with an analytic characterization of simply connected domains. The second part is concerned with functional analytic methods: Frchet and Hilbert spaces of holomorphic functions, the Bergman kernel, and unbounded operators on Hilbert spaces to tackle the theory of several variables, in particular the inhomogeneous Cauchy-Riemann equations and the d-bar Neumann operator. Contents Complex numbers and functions Cauchys Theorem and Cauchys formula Analytic continuation Construction and approximation of holomorphic functions Harmonic functions Several complex variables Bergman spaces The canonical solution operator to Nuclear Frchet spaces of holomorphic functions The -complex The twisted -complex and Schrdinger operators
- Illustratör: 30 Schwarz-Weiß-Abbildungen
- Format: Pocket/Paperback
- ISBN: 9783110417234
- Språk: Engelska
- Antal sidor: 347
- Utgivningsdatum: 2017-11-23
- Förlag: De Gruyter