bokomslag Complex Harmonic Splines, Periodic Quasi-Wavelets
Vetenskap & teknik

Complex Harmonic Splines, Periodic Quasi-Wavelets

Han-Lin Chen

Inbunden

769:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 226 sidor
  • 2000
This book, written by our distinguished colleague and friend, Professor Han-Lin Chen of the Institute of Mathematics, Academia Sinica, Beijing, presents, for the first time in book form, his extensive work on complex harmonic splines with applications to wavelet analysis and the numerical solution of boundary integral equations. Professor Chen has worked in Ap proximation Theory and Computational Mathematics for over forty years. His scientific contributions are rich in variety and content. Through his publications and his many excellent Ph. D. students he has taken a leader ship role in the development of these fields within China. This new book is yet another important addition to Professor Chen's quality research in Computational Mathematics. In the last several decades, the theory of spline functions and their ap plications have greatly influenced numerous fields of applied mathematics, most notably, computational mathematics, wavelet analysis and geomet ric modeling. Many books and monographs have been published studying real variable spline functions with a focus on their algebraic, analytic and computational properties. In contrast, this book is the first to present the theory of complex harmonic spline functions and their relation to wavelet analysis with applications to the solution of partial differential equations and boundary integral equations of the second kind. The material presented in this book is unique and interesting. It provides a detailed summary of the important research results of the author and his group and as well as others in the field.
  • Författare: Han-Lin Chen
  • Format: Inbunden
  • ISBN: 9780792361374
  • Språk: Engelska
  • Antal sidor: 226
  • Utgivningsdatum: 2000-01-01
  • Förlag: Springer