bokomslag Complex Interpolation between Hilbert, Banach and Operator Spaces
Vetenskap & teknik

Complex Interpolation between Hilbert, Banach and Operator Spaces

Gilles Pisier

Pocket

1219:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 78 sidor
  • 2010
Motivated by a question of Vincent Lafforgue, the author studies the Banach spaces X satisfying the following property: there is a function \varepsilon\to \Delta_X(\varepsilon) tending to zero with \varepsilon>0 such that every operator T\colon \ L_2\to L_2 with \|T\|\le \varepsilon that is simultaneously contractive (i.e., of norm \le 1) on L_1 and on L_\infty must be of norm \le \Delta_X(\varepsilon) on L_2(X). The author shows that \Delta_X(\varepsilon) \in O(\varepsilon^\alpha) for some \alpha>0 if X is isomorphic to a quotient of a subspace of an ultraproduct of \theta-Hilbertian spaces for some \theta>0 (see Corollary 6.7), where \theta-Hilbertian is meant in a slightly more general sense than in the author's earlier paper (1979).
  • Författare: Gilles Pisier
  • Format: Pocket/Paperback
  • ISBN: 9780821848425
  • Språk: Engelska
  • Antal sidor: 78
  • Utgivningsdatum: 2010-11-30
  • Förlag: American Mathematical Society