Data & IT
Pocket
Computer Vision Projects with PyTorch
Akshay Kulkarni • Adarsha Shivananda • Nitin Ranjan Sharma
819:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and other regularization techniques used in the industry. And then it gives you a quick overview of the PyTorch libraries used in the book. After that, it takes you through the implementation of image classification problems, object detection techniques, and transfer learning while training and running inference. The book covers image segmentation and an anomaly detection model. And it discusses the fundamentals of video processing for computer vision tasks putting images into videos. The book concludes with an explanation of the complete model building process for deep learning frameworks using optimized techniques with highlights on model AI explainability. After reading this book, you will be able to build your own computer vision projects using transfer learning and PyTorch. What You Will Learn Solve problems in computer vision with PyTorch. Implement transfer learning and perform image classification, object detection, image segmentation, and other computer vision applications Design and develop production-grade computer vision projects for real-world industry problems Interpret computer vision models and solve business problems Who This Book Is For Data scientists and machine learning engineers interested in building computer vision projects and solving business problems
- Illustratör: 324P152 illus 111 Illustrations, color 41 Illustrations, black and white XIV 111 illus in c
- Format: Pocket/Paperback
- ISBN: 9781484282724
- Språk: Engelska
- Antal sidor: 346
- Utgivningsdatum: 2022-07-19
- Förlag: APress