bokomslag Constructive Methods of Wiener-Hopf Factorization
Vetenskap & teknik

Constructive Methods of Wiener-Hopf Factorization

Gohberg Kaashoek

Pocket

769:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 410 sidor
  • 2012
The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r . . . rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r J J J J J where Aj is a square matrix of size nj x n say. B and C are j j j matrices of sizes n. x m and m x n . respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
  • Författare: Gohberg, Kaashoek
  • Format: Pocket/Paperback
  • ISBN: 9783034874205
  • Språk: Engelska
  • Antal sidor: 410
  • Utgivningsdatum: 2012-04-19
  • Förlag: Birkhauser Verlag AG