bokomslag Convergence of Deep Learning in Cyber-IoT Systems and Security
Data & IT

Convergence of Deep Learning in Cyber-IoT Systems and Security

Rajdeep Chakraborty Anupam Ghosh Jyotsna Kumar Mandal S Balamurugan

Inbunden

3229:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 480 sidor
  • 2022
CONVERGENCE OF DEEP LEARNING IN CYBER-IOT SYSTEMS AND SECURITY In-depth analysis of Deep Learning-based cyber-IoT systems and security which will be the industry leader for the next ten years. The main goal of this book is to bring to the fore unconventional cryptographic methods to provide cyber security, including cyber-physical system security and IoT security through deep learning techniques and analytics with the study of all these systems. This book provides innovative solutions and implementation of deep learning-based models in cyber-IoT systems, as well as the exposed security issues in these systems. The 20 chapters are organized into four parts. Part I gives the various approaches that have evolved from machine learning to deep learning. Part II presents many innovative solutions, algorithms, models, and implementations based on deep learning. Part III covers security and safety aspects with deep learning. Part IV details cyber-physical systems as well as a discussion on the security and threats in cyber-physical systems with probable solutions. Audience Researchers and industry engineers in computer science, information technology, electronics and communication, cybersecurity and cryptography.
  • Författare: Rajdeep Chakraborty, Anupam Ghosh, Jyotsna Kumar Mandal, S Balamurugan
  • Format: Inbunden
  • ISBN: 9781119857211
  • Språk: Engelska
  • Antal sidor: 480
  • Utgivningsdatum: 2022-12-09
  • Förlag: Wiley-Scrivener