bokomslag Covering Dimension of C*-Algebras and 2-Coloured Classification
Vetenskap & teknik

Covering Dimension of C*-Algebras and 2-Coloured Classification

Joan Bosa Nathanial P Brown Yasuhiko Sato Aaron Tikuisis Stuart White

Pocket

1349:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 97 sidor
  • 2019
The authors introduce the concept of finitely coloured equivalence for unital $^*$-homomorphisms between $\mathrm C^*$-algebras, for which unitary equivalence is the $1$-coloured case. They use this notion to classify $^*$-homomorphisms from separable, unital, nuclear $\mathrm C^*$-algebras into ultrapowers of simple, unital, nuclear, $\mathcal Z$-stable $\mathrm C^*$-algebras with compact extremal trace space up to $2$-coloured equivalence by their behaviour on traces; this is based on a $1$-coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, $\mathcal Z$-stable $\mathrm C^*$-algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a ``homotopy equivalence implies isomorphism'' result for large classes of $\mathrm C^*$-algebras with finite nuclear dimension.
  • Författare: Joan Bosa, Nathanial P Brown, Yasuhiko Sato, Aaron Tikuisis, Stuart White
  • Format: Pocket/Paperback
  • ISBN: 9781470434700
  • Språk: Engelska
  • Antal sidor: 97
  • Utgivningsdatum: 2019-03-30
  • Förlag: American Mathematical Society