bokomslag Data-Driven Remaining Useful Life Prognosis Techniques
Samhälle & debatt

Data-Driven Remaining Useful Life Prognosis Techniques

Xiao-Sheng Si Zheng-Xin Zhang Chang-Hua Hu

Pocket

2519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 430 sidor
  • 2018
This book introduces data-driven remaining useful life prognosis techniques, and shows how to utilize the condition monitoring data to predict the remaining useful life of stochastic degrading systems and to schedule maintenance and logistics plans. It is also the first book that describes the basic data-driven remaining useful life prognosis theory systematically and in detail. The emphasis of the book is on the stochastic models, methods and applications employed in remaining useful life prognosis. It includes a wealth of degradation monitoring experiment data, practical prognosis methods for remaining useful life in various cases, and a series of applications incorporated into prognostic information in decision-making, such as maintenance-related decisions and ordering spare parts. It also highlights the latest advances in data-driven remaining useful life prognosis techniques, especially in the contexts of adaptive prognosis for linear stochastic degrading systems, nonlinear degradation modeling based prognosis, residual storage life prognosis, and prognostic information-based decision-making.
  • Författare: Xiao-Sheng Si, Zheng-Xin Zhang, Chang-Hua Hu
  • Format: Pocket/Paperback
  • ISBN: 9783662571736
  • Språk: Engelska
  • Antal sidor: 430
  • Utgivningsdatum: 2018-07-13
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K