bokomslag Data Orchestration in Deep Learning Accelerators
Data & IT

Data Orchestration in Deep Learning Accelerators

Tushar Krishna Hyoukjun Kwon Angshuman Parashar Michael Pellauer Ananda Samajdar

Pocket

909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 146 sidor
  • 2020
This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.
  • Författare: Tushar Krishna, Hyoukjun Kwon, Angshuman Parashar, Michael Pellauer, Ananda Samajdar
  • Format: Pocket/Paperback
  • ISBN: 9783031006395
  • Språk: Engelska
  • Antal sidor: 146
  • Utgivningsdatum: 2020-08-18
  • Förlag: Springer International Publishing AG