bokomslag Deep Neural Networks in a Mathematical Framework
Data & IT

Deep Neural Networks in a Mathematical Framework

Anthony L Caterini Dong Eui Chang

Pocket

999:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 84 sidor
  • 2018
This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but alsoto those outside of the neutral network community.
  • Författare: Anthony L Caterini, Dong Eui Chang
  • Illustratör: Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9783319753034
  • Språk: Engelska
  • Antal sidor: 84
  • Utgivningsdatum: 2018-04-03
  • Förlag: Springer International Publishing AG