bokomslag Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms
Data & IT

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Tome Eftimov Peter Koroec

Pocket

2099:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 133 sidor
  • 2023
Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison Chapter 8.
  • Författare: Tome Eftimov, Peter Koroec
  • Format: Pocket/Paperback
  • ISBN: 9783030969196
  • Språk: Engelska
  • Antal sidor: 133
  • Utgivningsdatum: 2023-06-12
  • Förlag: Springer Nature Switzerland AG