bokomslag Degenerate Elliptic Equations
Vetenskap & teknik

Degenerate Elliptic Equations

Serge Levendorskii

Inbunden

1449:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 436 sidor
  • 1993
0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X, ) = L aa(x) a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self - adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self - adjoint operator with discrete spectrum and for the distribu- tion functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N+-(1,a2m(x,e))dxde T*O\O (on the right hand side, N+-(t,a2m(x,e))are the distribution functions of the matrix a2m(X,e) : C' -+ CU).
  • Författare: Serge Levendorskii
  • Format: Inbunden
  • ISBN: 9780792323051
  • Språk: Engelska
  • Antal sidor: 436
  • Utgivningsdatum: 1993-06-30
  • Förlag: Springer