Degree Theory of Immersed Hypersurfaces
Häftad, Engelska, 2021
1 279 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where $K$ is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to $-\chi(M)$, where $\chi(M)$ is the Euler characteristic of the ambient manifold $M$.
Produktinformation
- Utgivningsdatum2021-01-30
- Mått178 x 254 x undefined mm
- Vikt145 g
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- Antal sidor62
- FörlagAmerican Mathematical Society
- EAN9781470441852