bokomslag Design and Fabrication of Equal Channel Angular Extrusion Process Analysis for Non-Ferrous Materials
Vetenskap & teknik

Design and Fabrication of Equal Channel Angular Extrusion Process Analysis for Non-Ferrous Materials

Perumalla Janaki Ramulu A Lavanya

Pocket

909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 56 sidor
  • 2017
"Equal Channel Angular Extrusion" (ECAE) is a significant method in industrial forming applications, which is the most important method for the production of ultrafine grained bulk samples, where plastic strains are introduced into the bulk material without any changes in the cross section. ECAE has different die channel angles from which an optimum die channel angle should be identified so that efficient mechanical properties will be obtained.This study is focused on the plastic deformation behavior of Al alloys by modeling ECAE with experimental and finite element software. A solid model was generated using CATIA. The STL files of ECAE die generated in CATIA were used in DEFORM-3D for simulations. The experiments are performed by designing the ECAE tools such as die, punch and billet. A series of numerical experiments were carried out for the die angles of 115°, 125°and 135° and outer corner angle of 6°, using a billet diameter of 9mm and a height of 70mm. A detailed analysis of the strains introduced by ECAP ("Equal Channel Angular Pressing") in a single passage through the die is noted. The experiments are conducted by attaching the ECAE tools to the Universal Testing Machine on aluminum alloy. The dimensions are followed for ECAE by taking considerations from the existing literature into account. On the basis of the experiment and simulation results, load, displacement, and punch force are evaluated and compared with each other.

  • Författare: Perumalla Janaki Ramulu, A Lavanya
  • Format: Pocket/Paperback
  • ISBN: 9783960671060
  • Språk: Engelska
  • Antal sidor: 56
  • Utgivningsdatum: 2017-01-11
  • Förlag: Anchor Academic Publishing