bokomslag Differential Equations in Banach Spaces
Vetenskap & teknik

Differential Equations in Banach Spaces

Angelo Favini Enrico Obrecht

Pocket

549:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 306 sidor
  • 1986
On fundamental solutions for abstract parabolic equations.- On some singular nonlinear evolution equations.- Some transmutation methods for canonical systems.- Scattering frequencies for time Periodic scattering problems.- Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces.- Linearized stability for nonlinear semigroups.- On a class of semilinear parabolic equations in L1.- On a singular non-autonomous equation in Banach spaces.- On the spectrum of certain systems of linear evolution equations.- Some extensions of Thomas-Fermi theory.- The extent of spatial regularity for parabolic integrodifferential equations.- An approach to the singular solutions of elliptic problems via the theory of differential equations in Banach spaces.- A two point problem for a second order abstract differential equation.- Sharp regularity results for mixed hyperbolic problems of second order.- C? regularity for fully nonlinear abstract evolution equations.- Semilinear evolution equations in Fret spaces.- On some singular hyperbolic evolution equations in Hilbert spaces.- Periodic solutions of the thermostat problem.- Some questions on the integrodifferential equation u?=AK*u+BM*u.- On fuchsian hyperbolic partial differential equations.- Global solutions to evolution equations of parabolic type.- Compact perturbations of weakly equicontinuous semigroups.- Cosine families of operators and applications.- Regularity of functions on an interval with values in the space of fractional powers of operators.

  • Författare: Angelo Favini, Enrico Obrecht
  • Format: Pocket/Paperback
  • ISBN: 9783540171911
  • Språk: Engelska
  • Antal sidor: 306
  • Utgivningsdatum: 1986-12-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K