bokomslag Differential Geometric Methods in Mathematical Physics
Vetenskap & teknik

Differential Geometric Methods in Mathematical Physics

Heinz-Dietrich Doebner Jrg-Dieter Hennig

Pocket

539:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 344 sidor
  • 1985
The work of Steven M. Paneitz.- Indecomposable finite dimensional representations of the poincare group and associated fields.- The energy momentum mapping of the lagrange top.- On the momentum mapping in field theory.- An axiomatic characterization of the poincare-cartan form for second order variational problems.- Energy level distributions and chaos in quantum mechanics.- Quasi-*-algebras and general weyl quantization.- Geometry of dynamical systems with time-dependent constraints and time-dependent hamiltonians: An approach toward quantization.- Regularity aspects of the quantized perturbative S-matrix in 4-dimensional space-time.- Curvature forms with singularities and non-integral characteristic classes.- Yang-mills aspects of poincarauge theories.- Supermanifolds and Berezin's new integral.- Spontaneous compactification and fermion chirality.- Off-shell extended supergravity in extended superspace.- Completely integrable systems of KdV-type related to isospectral periodic regular difference operators.- Non-linear techniques in two dimensional grassmannian Sigma models.- A geometrical obstruction to the existence of two totally umbilical complementary foliations in compact manifolds.- Einstein equations without killing vectors, non-linear sigma models and self-dual yang-mills theory.- Locality and uniformity in global elasticity.- Differential geometrical approach to the theory of amorphous solids.- The ising model on finitely generated groups and the braid group.

  • Författare: Heinz-Dietrich Doebner, Jrg-Dieter Hennig
  • Format: Pocket/Paperback
  • ISBN: 9783540156666
  • Språk: Engelska
  • Antal sidor: 344
  • Utgivningsdatum: 1985-08-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K