bokomslag Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions
Vetenskap & teknik

Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions

J William Helton Igor Klep Scott McCullough Markus Schweighofer

Pocket

1349:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 104 sidor
  • 2019
An operator $C$ on a Hilbert space $\mathcal H$ dilates to an operator $T$ on a Hilbert space $\mathcal K$ if there is an isometry $V:\mathcal H\to \mathcal K$ such that $C= V^* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $\vartheta (d)$, expressed as a ratio of $\Gamma $ functions for $d$ even, of all $d\times d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
  • Författare: J William Helton, Igor Klep, Scott McCullough, Markus Schweighofer
  • Format: Pocket/Paperback
  • ISBN: 9781470434557
  • Språk: Engelska
  • Antal sidor: 104
  • Utgivningsdatum: 2019-03-30
  • Förlag: American Mathematical Society