Vetenskap & teknik
Pocket
Diophantine Approximation and Dirichlet Series
Herv Quefflec • Martine Quefflec
1789:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Inbunden 1789:-
The second edition of the book includes a new chapter on the study of composition operators on the Hardy space and their complete characterization by Gordon and Hedenmalm. The book is devoted to Diophantine approximation, the analytic theory of Dirichlet series and their composition operators, and connections between these two domains which often occur through the Kronecker approximation theorem and the Bohr lift. The book initially discusses Harmonic analysis, including a sharp form of the uncertainty principle, Ergodic theory and Diophantine approximation, basics on continued fractions expansions, and the mixing property of the Gauss map and goes on to present the general theory of Dirichlet series with classes of examples connected to continued fractions, Bohr lift, sharp forms of the BohnenblustHille theorem, HardyDirichlet spaces, composition operators of the HardyDirichlet space, and much more. Proofs throughout the book mix Hilbertian geometry, complex and harmonic analysis,number theory, and ergodic theory, featuring the richness of analytic theory of Dirichlet series. This self-contained book benefits beginners as well as researchers.
- Format: Pocket/Paperback
- ISBN: 9789811596698
- Språk: Engelska
- Antal sidor: 287
- Utgivningsdatum: 2022-01-28
- Förlag: Springer Verlag, Singapore