bokomslag Direct and Inverse Scattering at Fixed Energy for Massless Charged Dirac Fields by Kerr-Newman-de Sitter Black Holes
Vetenskap & teknik

Direct and Inverse Scattering at Fixed Energy for Massless Charged Dirac Fields by Kerr-Newman-de Sitter Black Holes

Thierry Daude Francois Nicoleau

Pocket

1269:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 113 sidor
  • 2017
In this paper, the authors study the direct and inverse scattering theory at fixed energy for massless charged Dirac fields evolving in the exterior region of a Kerr-Newman-de Sitter black hole. In the first part, they establish the existence and asymptotic completeness of time-dependent wave operators associated to our Dirac fields. This leads to the definition of the time-dependent scattering operator that encodes the far-field behavior (with respect to a stationary observer) in the asymptotic regions of the black hole: the event and cosmological horizons. The authors also use the miraculous property (quoting Chandrasekhar)--that the Dirac equation can be separated into radial and angular ordinary differential equations-to make the link between the time-dependent scattering operator and its stationary counterpart. This leads to a nice expression of the scattering matrix at fixed energy in terms of stationary solutions of the system of separated equations. In a second part, the authors use this expression of the scattering matrix to study the uniqueness property in the associated inverse scattering problem at fixed energy. Using essentially the particular form of the angular equation (that can be solved explicitly by Frobenius method) and the Complex Angular Momentum technique on the radial equation, the authors are finally able to determine uniquely the metric of the black hole from the knowledge of the scattering matrix at a fixed energy.
  • Författare: Thierry Daude, Francois Nicoleau
  • Format: Pocket/Paperback
  • ISBN: 9781470423766
  • Språk: Engelska
  • Antal sidor: 113
  • Utgivningsdatum: 2017-06-30
  • Förlag: American Mathematical Society