bokomslag Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data
Data & IT

Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data

Qian Wang Badri Roysam Fausto Milletari Hien V Nguyen Shadi Albarqouni

Pocket

789:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 254 sidor
  • 2019
This book constitutes the refereed proceedings of the First MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the First International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. DART 2019 accepted 12 papers for publication out of 18 submissions. The papers deal with methodological advancements and ideas that can improve the applicability of machine learning and deep learning approaches to clinical settings by making them robust and consistent across different domains. MIL3ID accepted 16 papers out of 43 submissions for publication, dealing with best practices in medical image learning with label scarcity and data imperfection.
  • Författare: Qian Wang, Badri Roysam, Fausto Milletari, Hien V Nguyen, Shadi Albarqouni
  • Format: Pocket/Paperback
  • ISBN: 9783030333904
  • Språk: Engelska
  • Antal sidor: 254
  • Utgivningsdatum: 2019-10-12
  • Förlag: Springer Nature Switzerland AG