bokomslag Domain Adaptation for Visual Understanding
Data & IT

Domain Adaptation for Visual Understanding

Richa Singh Mayank Vatsa Vishal M Patel Nalini Ratha

Inbunden

1519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 144 sidor
  • 2020
This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition. Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods. This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding.
  • Författare: Richa Singh, Mayank Vatsa, Vishal M Patel, Nalini Ratha
  • Format: Inbunden
  • ISBN: 9783030306700
  • Språk: Engelska
  • Antal sidor: 144
  • Utgivningsdatum: 2020-01-09
  • Förlag: Springer Nature Switzerland AG