bokomslag Domain Generalization with Machine Learning in the NOvA Experiment
Data & IT

Domain Generalization with Machine Learning in the NOvA Experiment

Andrew T C Sutton

Pocket

2569:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 170 sidor
  • 2024
This thesis presents significant advances in the use of neural networks to study the properties of neutrinos. Machine learning tools like neural networks (NN) can be used to identify the particle types or determine their energies in detectors such as those used in the NOvA neutrino experiment, which studies changes in a beam of neutrinos as it propagates approximately 800 km through the earth. NOvA relies heavily on simulations of the physics processes and the detector response; these simulations work well, but do not match the real experiment perfectly. Thus, neural networks trained on simulated datasets must include systematic uncertainties that account for possible imperfections in the simulation. This thesis presents the first application in HEP of adversarial domain generalization to a regression neural network. Applying domain generalization to problems with large systematic variations will reduce the impact of uncertainties while avoiding the risk offalsely constraining the phase space. Reducing the impact of systematic uncertainties makes NOvA analysis more robust, and improves the significance of experimental results.
  • Författare: Andrew T C Sutton
  • Format: Pocket/Paperback
  • ISBN: 9783031435850
  • Språk: Engelska
  • Antal sidor: 170
  • Utgivningsdatum: 2024-11-09
  • Förlag: Springer International Publishing AG