bokomslag EEG Brain Signal Classification for Epileptic Seizure Disorder Detection
Vetenskap & teknik

EEG Brain Signal Classification for Epileptic Seizure Disorder Detection

Sandeep Kumar Satapathy

Pocket

609:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 2-7 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 134 sidor
  • 2019

EEG Brain Signal Classification for Epileptic Seizure Disorder Detection provides the knowledge necessary to classify EEG brain signals to detect epileptic seizures using machine learning techniques. Chapters present an overview of machine learning techniques and the tools available, discuss previous studies, present empirical studies on the performance of the NN and SVM classifiers, discuss RBF neural networks trained with an improved PSO algorithm for epilepsy identification, and cover ABC algorithm optimized RBFNN for classification of EEG signal. Final chapter present future developments in the field.

This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need the most recent and promising automated techniques for EEG classification.




  • Explores machine learning techniques that have been modified and validated for the purpose of EEG signal classification using Discrete Wavelet Transform for the identification of epileptic seizures
  • Encompasses machine learning techniques, providing an easily understood resource for both non-specialized readers and biomedical researchers
  • Provides a number of experimental analyses, with their results discussed and appropriately validated
  • Författare: Sandeep Kumar Satapathy
  • Format: Pocket/Paperback
  • ISBN: 9780128174265
  • Språk: Engelska
  • Antal sidor: 134
  • Utgivningsdatum: 2019-02-14
  • Förlag: Academic Press