bokomslag Elementare Grundlagen der Mathematik für Wirtschaftswissenschaftler

Elementare Grundlagen der Mathematik für Wirtschaftswissenschaftler

Jochen Schwarze

Pocket

189:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 140 sidor
  • 2010
Unverzichtbar für ein erfolgreiches BWL-Studium: Solide Grundkenntnisse in einigen Teilgebieten der Mathematik, z. B. Funktionen, Differentialrechnung, Finanzmathematik und Lineare Algebra, sind unverzichtbare Voraussetzungen für ein wirtschaftswissenschaftliches Studium und gehören zum Pflichtprogramm im Grundstudium. Studienanfänger bringen dieses Vorwissen häufig nicht mit. Daher ist eine rechtzeitige Auffrischung mathematischer Grundkenntnisse wichtig für ein erfolgreiches Studium. Dieser Band stellt elementare mathematische Grundlagen dar und beruht auf der langjährigen Lehrerfahrung des Autors. Er ergänzt die ebenfalls im NWB Verlag erschienenen drei Bände Mathematik für Wirtschaftswissenschaftler und die Aufgabensammlung zur Mathematik für Wirtschaftswissenschaftler. Da die Mathematik für die Wirtschaftswissenschaften nur eine Hilfsdisziplin ist, wurde auf eine knappe Darstellung Wert gelegt. Auswahl und Behandlung des Stoffes beschränken sich auf die Bedürfnisse der Wirtschaftswissenschaften, sodass einige Gebiete nur in wesentlichen Grundzügen behandelt werden. Alle Kapitel enthalten Beispiele, Definitionen, Abbildungen und Regeln. Übungsaufgaben mit Lösungen ermöglichen eine effiziente Wissenskontrolle der mathematischen Grundkenntnisse. Aus dem Inhalt:Logische Symbole, Zahlen, Mengenlehre, Arithmetik, Potenzen, Wurzeln, Logarithmen, Gleichungen mit einer und mehreren Variablen (linear und quadratisch), Ungleichungen, Planimetrie, Stereometrie, Trigonometrie.

  • Författare: Jochen Schwarze
  • Format: Pocket/Paperback
  • ISBN: 9783482566486
  • Språk: Tyska
  • Antal sidor: 140
  • Utgivningsdatum: 2010-10-21
  • Förlag: NWB Verlag GmbH & Co. KG