bokomslag Elements of the Representation Theory of the Jacobi Group
Vetenskap & teknik

Elements of the Representation Theory of the Jacobi Group

Rolf Berndt Ralf Schmidt

Inbunden

1209:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 236 sidor
  • 1998
The Jacobi group is a semidirect product of a symplectic group with a Heisenberg group. It is an important example for a non-reductive group and sets the frame within which to treat theta functions as well as elliptic functions - in particular, the universal elliptic curve. This text gathers for the first time material from the representation theory of this group in both local (archimedean and non-archimedean) cases and in the global number field case. Via a bridge to Waldspurger's theory for the metaplectic group, complete classification theorems for irreducible representations are obtained. Further topics include differential operators, Whittaker models, Hecke operators, spherical representations and theta functions. The global theory is aimed at the correspondence between automorphic representations and Jacobi forms. This volume is thus a complement to the seminal book on Jacobi forms by M. Eichler and D. Zagier. Incorporating results of the authors' original research, this exposition is meant for researchers and graduate students interested in algebraic groups and number theory, in particular, modular and automorphic forms.
  • Författare: Rolf Berndt, Ralf Schmidt
  • Format: Inbunden
  • ISBN: 9783764359225
  • Språk: Engelska
  • Antal sidor: 236
  • Utgivningsdatum: 1998-05-01
  • Förlag: Birkhauser Verlag AG