Vetenskap & teknik
Elliptic Boundary Value Problems with Fractional Regularity Data
Alex Amenta • Pascal Auscher
Inbunden
2159:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called ``first order approach'' which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
- Format: Inbunden
- ISBN: 9781470442507
- Språk: Engelska
- Antal sidor: 152
- Utgivningsdatum: 2018-05-30
- Förlag: American Mathematical Society