bokomslag Elliptic Curves and Big Galois Representations
Vetenskap & teknik

Elliptic Curves and Big Galois Representations

Daniel Delbourgo

Pocket

1709:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 288 sidor
  • 2008
The arithmetic properties of modular forms and elliptic curves lie at the heart of modern number theory. This book develops a generalisation of the method of Euler systems to a two-variable deformation ring. The resulting theory is then used to study the arithmetic of elliptic curves, in particular the Birch and Swinnerton-Dyer (BSD) formula. Three main steps are outlined: the first is to parametrise 'big' cohomology groups using (deformations of) modular symbols. Finiteness results for big Selmer groups are then established. Finally, at weight two, the arithmetic invariants of these Selmer groups allow the control of data from the BSD conjecture. As the first book on the subject, the material is introduced from scratch; both graduate students and professional number theorists will find this an ideal introduction. Material at the very forefront of current research is included, and numerical examples encourage the reader to interpret abstract theorems in concrete cases.
  • Författare: Daniel Delbourgo
  • Format: Pocket/Paperback
  • ISBN: 9780521728669
  • Språk: Engelska
  • Antal sidor: 288
  • Utgivningsdatum: 2008-07-01
  • Förlag: Cambridge University Press