bokomslag Entanglement Between Noncomplementary Parts of Many-Body Systems
Vetenskap & teknik

Entanglement Between Noncomplementary Parts of Many-Body Systems

Hannu Christian Wichterich

Inbunden

1499:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 116 sidor
  • 2011
This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient "amount" of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be "harvested" by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details.
  • Författare: Hannu Christian Wichterich
  • Illustratör: 21 schwarz-weiße Abbildungen
  • Format: Inbunden
  • ISBN: 9783642193415
  • Språk: Engelska
  • Antal sidor: 116
  • Utgivningsdatum: 2011-05-19
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K