1169:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
We prove here the Martino-Priddy conjecture at the prime $2$: the $2$-completions of the classifying spaces of two finite groups $G$ and $G'$ are homotopy equivalent if and only if there is an isomorphism between their Sylow $2$-subgroups which preserves fusion. This is a consequence of a technical algebraic result, which says that for a finite group $G$, the second higher derived functor of the inverse limit vanishes for a certain functor $\mathcal{Z}_G$ on the $2$-subgroup orbit category of $G$. The proof of this result uses the classification theorem for finite simple groups.
- Format: Pocket/Paperback
- ISBN: 9780821838280
- Språk: Engelska
- Antal sidor: 102
- Utgivningsdatum: 2006-06-01
- Förlag: OUP Oxford