bokomslag Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem
Vetenskap & teknik

Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem

Michael A Hill

Inbunden

3019:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 888 sidor
  • 2021
The long-standing Kervaire invariant problem in homotopy theory arose from geometric and differential topology in the 1960s and was quickly recognised as one of the most important problems in the field. In 2009 the authors of this book announced a solution to the problem, which was published to wide acclaim in a landmark Annals of Mathematics paper. The proof is long and involved, using many sophisticated tools of modern (equivariant) stable homotopy theory that are unfamiliar to non-experts. This book presents the proof together with a full development of all the background material to make it accessible to a graduate student with an elementary algebraic topology knowledge. There are explicit examples of constructions used in solving the problem. Also featuring a motivating history of the problem and numerous conceptual and expository improvements on the proof, this is the definitive account of the resolution of the Kervaire invariant problem.
  • Författare: Michael A Hill
  • Illustratör: Worked examples or Exercises
  • Format: Inbunden
  • ISBN: 9781108831444
  • Språk: Engelska
  • Antal sidor: 888
  • Utgivningsdatum: 2021-07-29
  • Förlag: Cambridge University Press